Snowflake Vs BigQuery — Two Cloud Data Warehouses Of Many – Setting Up Your Data In The Modern Data Stack

Snowflake Vs BigQuery — Two Cloud Data Warehouses Of Many – Setting Up Your Data In The Modern Data Stack

September 29, 2021 big data consulting Data Based Consulting 0
snowflake vs bigquery

It’s becoming difficult to keep track of all the new data warehouse solutions that are trying to challenge the current incumbents.

Choosing the best data warehouse to meet the needs and objectives of your operation is a crucial component of your business strategy. Unfortunately, many organizations are still struggling with this decision.

To add to this, implementing data warehouses can be difficult. But, upon completion of developing a data warehouse, they have the potential of delivering robust returns on investments and giving you better insights into your data.

Snowflake and Google BigQuery are well-established, powerful cloud-based data warehouse giants with thousands of satisfied companies. But, which one is better for you?

That’s a hard answer, but let’s compare the two.

Cloud Data Warehouse Intro

For those unfamiliar with what a data warehouse is. Let’s go over a quick intro.

Data warehousing has been around since the 1980s. The concept has changed and evolved dramatically since then. The increasing challenges and complexities of the business world have morphed data warehousing into a distinct discipline. This has led to better technology and tighter business practices.

The original purpose of data warehouses was to enable companies to maintain a analytical data source that they could go to, in order to answer questions. This is still an important factor. However, the need has grown for easier access to company information on a large scale by an end-user for data reporting and analysis.

Also, the defined user has massively expanded from specialized developers to just about anyone who can drag and drop in Tableau or Power-BI.

A data warehouse collects and stores all types of information from various sources, both within your organization and external sources. They collect raw data that is processed to give you quick answers to your business queries so you can make informed decisions about forecasting and budgeting.

By gathering data from all aspects of your organization — from HR to sales and marketing — data warehouses make light work of your analytic processing workload. Snowflake and BigQuery are two excellent examples of enterprise-level data warehouses. Powerful enough to handle the largest organizations.

Today, almost every large and medium-sized business has some form of data warehouse. Experts estimate that in less than 5 years, the market needs for data warehouses will nearly double, making it a 30 billion dollar industry.

If your company is ready to invest in a data warehouse or needs to upgrade from its current provider, you want to find the best and most cost-effective service for your needs.

Background On BigQuery

BigQuery, owned by Google, is a fully-managed, highly scalable, serverless data warehouse designed for fast-paced agility, with machine learning capabilities.

The platform was released to the general public in late 2011. The serverless architecture allows it to perform at scale and speed to provide incredibly fast SQL analytics across large databases.

They did have a few hiccups, like creating their own version of SQL, that thankfully they have recently fixed.

In addition, it has experienced numerous upgrades to features, enhanced performance, higher security protocols, increased reliability, and generally making it easier to operate and glean deeper insights.

Background On Snowflake

Snowflake was founded in 2012 and officially launched 2 years later. It is a cloud-based computing data warehouse company based in Bozeman, Montana. The company was named for the founders’ passion for winter sports.

Snowflake allows enterprises to store and analyze company data using hardware and software stored in the cloud. It can be run on Amazon S3 since 2014, on Microsoft Azure since 2018, and Google since 2019. The company is credited with the revival of the data warehouse industry by perfecting and building a cloud-based data platform.

This is what makes Snowflake unique. Its actually more of a re-seller of AWS and other cloud services where it has developed a Cloud first data warehouse literally built on other cloud services(So Google will make money one way or another).

Snowflake Vs. BigQuery Comparison

The main differences between Snowflake vs BigQuery include:

Performance: Studies performed by independent third parties reveal that Snowflake performs noticeably better than BigQuery. However, this assessment is not across the board. In certain situations, BigQuery performs better than Snowflake.

Now, I will state that honestly, a lot of performance comes from how you design your data. If you’re trying to run queries on billions of rows, you’re going to have a bad time. It’s either going to be expensive or slow.

Ease of use: Snowflake and BigQuery both score high on the usability scale; however, Snowflake is personally simpler.

It has a very simple UI and has a lot of great features that improve ease of use for both analysts and data engineers.

Security: Snowflake and BigQuery both have robust security features in place that protect the integrity and confidentiality of sensitive data. Plus, they are both fully compliant with all industry-specific standards.

Architecture

BigQuery is serverless, using Massively Parallel Processing (MPP) architecture. So, there are no setup or configuration headaches. It performs storage and computing tasks separately for enhanced query performance.

Snowflake is built on a hybrid architecture with a Multi-cluster Shared Data Architecture structure. Compute power, data storage, and client services are separate, running independently of one another. This delivers faster performance and allows for concurrent workloads by multiple users. Snowflake’s storage architecture supports structured and semi-structured data.

Scalability

Database scalability allows you to scale out or scale up a database so that it hold an increasing amount of data without affecting performance.

As data volume grows or queries become more complex, both Snowflake and Bigquery provide options in terms of scaling. With Snowflake, users are able to scale up or down as needed and only pay for the resources they actually use. BigQuery, on the other hand, is “serverless” and can scale independently, and all scaling issues are handled automatically.

This allows BigQuery to be incredibly flexible. It can quickly and seamlessly scale to any size. It is also highly cost-efficient. You are only charged for the resources you actually use, not for specific resources outlined in a contract.

Performance

A major point of comparison is performance. How do Snowflake and BigQuery stack up?

During a series of tests in 2019, technology blogsters found that on a number of metrics, the Snowflake solution consistently performed better than BigQuery.

The industry-approved standard TPC-DS dataset was used for testing. It is considered a “general-purpose decision support system” based on fictional e-commerce data. A total of 103 tests were run over the dataset, which was comprised of 30 terabytes.

Snowflake completed all of the queries in 5,793 seconds, while it took BigQuery 37,283 seconds to finish.

Of course, this is not to say that Snowflake is faster in all situations. For example, BigQuery outperformed Snowflake on the query involving finding the best-performing and worst-performing items as measured by net profit.

Snowflake and BigQuery are both underactive and continual development, with new features and performance enhancements being added regularly. Current and new developments to both platforms will likely change the calculus in the future as to which data warehouse solution truly performs better.

Cost

Cost is a serious consideration for many companies. Although you should never sacrifice performance for cost, sometimes you might have to choose the cheaper option.

Pricing model: Pricing is always tricky when it comes to cloud as it is often a combination of storage, compute and other similar factors. So here is the current pricing breakdown for Snowflake vs BigQuery.

Which Is Right For You?

Snowflake and BigQuery data warehouses are both feature-rich solutions that have helped all types and sizes of businesses improve their BI and analytics workflows.

Although BigQuery can be cheaper than Snowflake when it comes to storage, the nature of BigQuery’s compute pricing model is complicated and very different from the time-used model employed by Snowflake. Additionally, Snowflake generally outperforms BigQuery.

In the end, it’s your decision. You choose which solution is best for your organization.

If you are interested in reading more about data science or data engineering, then read/watch the articles/videos below.

5 Great Data Engineering Tools For 2021 – My Favorite Data Engineering Tools

Data Warehouses Vs Data Lakes Vs Databases

4 SQL Tips For Data Scientists

What Are The Benefits Of Cloud Data Warehousing And Why You Should Migrate

5 Great Libraries To Manage Big Data With Python

Kafka Vs RabbitMQ

SQL Best Practices — Designing An ETL Video